Uka Tarsadia University (Diwaliba Polytechnic)

Diploma in Environmental Engineering Objective Type Questions (Environmental Monitoring)

Unit 1

1)	Environmental monitoring involves the of one or more measurements that are used to assess the status of an environment. (a) Collection (b) Segregation (c) Disposal (d) analysis
2)	Risk assessment is a process that has been formalized to estimate the risk of adverse health effects caused by exposure to and microorganism.
	(a) Hazardous fumes(b) Harmful chemicals(c) colours(d) vapours
3)	Determining the level of contaminants in an airshed to compare withand guidelines.
	(a) regulatory(b) toxic(C) standard(d) resource
4)	A monitor is a type of
	(a) semaphore
	(b) low level synchronization construct
	(c) high level synchronization construct
	(d) none of the above
5)	A monitor is characterized by
	(a) a set of programmers defined operators
	(b) an identifier
	(c) the number of variables in it
	(d) all of the above
6)	A procedure defined within a can access only those variables declared locally within the and its formal parameters.
	a) process, semaphore

	b)]	process, monitor
	c) :	semaphore, semaphore
	d) :	monitor
7)	The	e monitor construct ensures that
	a) (only one process can be active at a time within the monitor
	b) 1	n number of processes can be active at a time within the monitor
	c) 1	the queue has only one process in it at a time
	d) :	all of the mentioned
8)	Re	sults based management includes:
	a)	Planning, implementing and monitoring
	b)	Planning and monitoring and evaluation
	c)	The monitoring and evaluation phase only
	d)	The planning phase only
9) ′	Гhе	different steps of project or program cycle are:
	a)	Plan, implement, monitor, evaluate
	b)	Initial assessment, planning, implementation, evaluate
	c)	Initial assessment, planning, implement, monitor, evaluate
	d)	Planning, implement, monitor, evaluate
10)	W	hat does a monitoring and evaluation framework include?
	a)	Objectives, assumptions, indicators and a summary of activities
	b)	Objectives and indicators
	c)	Goal and objectives
	d)	Goal, objectives and indicators
11)	W	That are the types of environmental monitoring?
	a)	Soil erosion monitoring
	b)	Biological
	c)	Disposal
	d)	a and b both
12)		nvironmental monitoring is designed to help us understand the natural vironment and
	a)	protect it from any negative outcomes of human activity
	•	understand ecological and parameter observation
		carbon and nitrogen cycle
	•	none of above
13)	,	vironmental impact assessments and results candetermine

whether or not projects are given the all clear.
a) Indirect
b) Directly
c) Reverse
d) None of above
14) What are the major causes of environmental problems?
a) Ozone Depletion, Greenhouse Effect
b) Construction
c) Sewer waste
d) None of above
15) EnvironmentalEvaluation is a process to facilitate management decisions regarding an organization.
a) contribution
b) performancec) datad) area
16) Monitor air quality and evaluate air emissions to protect and the environment from air pollution.
a) Public health
b) Public area
c) Working area
d) Working notice
17) is designed to help us understand the natural environment.
a) Environmental monitoring
b) Environmental hearing
c) Environmental notice
d) None of above
18)is the regular observation and recording of activities taking place in a project or programme.
a) Working
b) Area
c) Monitoring d) Notice
19) What are types of monitoring?
a) Technical monitoring
b) Financial Monitoring
c) Advance monitoring
\sim

d) a and b both
20) Environmental monitoring involves the assessment of theof the environment in order to control the risk of pollution.
a) Quality
b) Quantity
c) Area
d) Size
21) Monitoring is use for satellites to track changes in the landscape over time.
a) Chemical
b) Physicalc) Biologicald) Aromatic
22)Environmental Monitoring tracks changes in, temperature and weather patterns.
a) Climate
b) Area
c) Work
d) Size
23)Conditions which directly affect individual fish are callingvariables. a) Secondary
b) Primary
c) Tertiary
d) Advance
24) Environmentally-related changes in the natural mortality rate of post-recruits obviously cannot be excluded as having great potential to affect size.
a) Area
b) Work
c) Population
d) All 0f above
25) Primary productivity depends on such factors as insolation, nutrients temperature, circulation andprocesses.
a) mixing
b) working
c) standard
d) quality
26) and dispersal of physical microstructure is related to various processes including solar insolation, tidal currents and wind-induced turbulent mixing.
a) Working

b)	Standard
c)	Development
d)	Dispersion
27) _	provide basic data on the state of the marine environment.
a)	Observation
b)	Standard
c)	Prediction
d)	Impact
28) C	ost to fishery programmes is low because
a)	their use for farming is a by-product of other programmes.
b)	southeast trade winds in the central equatorial Pacific generates a large-scale perturbation
c)	their use for fisheries is a by-product of meteorological programmes.
d)	None of above
	oastal installations offerand cost-effective means of monitoring the pastal marine environment.
a)	expensive
b)	valuable
c)	non valuable
d)	cheap
•	edicated ships represent a rather mode of data collection. high cost
b)	low cost
c)	medium cost
d)	None of above
31) H	ealth monitoring is to ascertain if damage is present or not based on
a)	simple damage classifier such as outlier analysis
b)	measured dynamic or static characteristics of a system to be monitored
c)	working hazardous monitoring program
d)	none of above
	ariability inproperties can be a result of time-varying environmental and perational conditions.
a)	economic
b)	evaluate
c)	dynamic
d)	organise

33) Environmental or operating variability is an issue there aredifferent situations for data normalization.			
a)	three		
b)	four		
c)	five		
d)	two		
•	Ionitoring for the purposes of national environmental standards can only be rried out with		
a)	the low accuracy method in schedule 1 regulation		
b)	high-precision instrumental methods in accordance with Schedule 2 of the regulations.		
c)	High quality of data generation and prediction		
d)	All of above		
35) M	Iethods that involve lower resolution instruments can be used for an initialsurvey.		
a)	prediction		
b)	scoping		
c)	screening		
d)	advance		
36) _	monitoring may require a higher level of sensitivity.		
a)	Compliance		
b)	Advance		
c)	Detail		
d)	None of above		
•	methods that provide continuous records of contaminant levels. Low resolution		
b)	High resolution		
c)	Medium resolution		
d)	All of above		
	monitoring involves the assessment of the quality of the environment in order control the risk of pollution.		
a)	Biological		
b)	Physical		
c)	Environmental		
d)	Chemical		
39) P	urpose of Environmental Monitoring (EM) is to establish alert and action limits and		

	a)	continuously validate the integrity of the cleaning
	b)	verify the value and price
	c)	working solution
	d)	hazardous and toxic effect
40)) A	ssess the status of an environment that changes and temporally. a) access
	b)	spatially
	c)	working
	d)	hazardous
41	l)Ide	entify and implement changes to work activities and the use of resources that
	a)	will reduce the negative and increase the positive impact on the environment.
	b)	Will possible area implementation
	c)	Process changes
	d)	None of above
42)	Env	rironmental monitoring is designed to help us understand the natural environment and
	a)	Resource of other positive attributes
	b)	protect it from any negative outcomes of human activity
	c)	increase humidity
	d)	increase water resources
43	En (vironmental monitoring is the process of sampling and
	a)	Identify and implement changes to work activities
	b)	Identify environmental attributes
	c)	analysing specific environmental media for evidence of contaminant levels over time
	d)	all of above
44)		is the regular observation and recording of activities taking place in a project or
	•	gramme. Monitoring
	•	Data
	•	Information
	,	Resource
45)	•	pose of environmental law is to protect andthe environment.
1 3)		Gathering
	b)	Preserve
	c)	Negotiated
	d)	Pasteurization

46)	Env	rironmental monitoring is subject to analysis.
	a)	statistical
	b)	geometric
	c)	increase
	d)	decrease
47)		are used to identify the air quality and the levels of pollution.
	a)	Water monitor
	b)	Noise monitor
	c)	Air monitor
	d)	Soil monitor
48)		method used depends on the type of environment, the sampling material, and
	the	future use of the data collected.
	a)	Collective
	b)	Sampling
	c)	Preservation
	d)	All of above
49)		rironmental quality monitoring is theof information at set locations. a) servation
	b)	Data
	c)	Sample
	•	Collection
50)	Mo	nitoring, survey and surveillance are all based on data collection, evaluation and
	а)	Reporting
	b)	Preservation
	c)	Collection
	d)	Gathering
	ŕ	Unit 2
	1)	Grab sample is oneat particular time and place.
		a) replaced
		b) collected
		c) transferring
		d) generation
	2)	is required for certain test that must be performed at sampling site.

	a)	Grab sample
	b)	Composite sample
	c)	Integrated composite sample
	d)	None of above
3)		may be fixed volume and flow proportioned sample.
	a)	Integrated sample
	b)	Composite sample
	c)	Garb sample
	d)	All of above
4)	Con	nposite sampling consists of a collection of numerous individual
	disc	erete samples
	a)	taken at regular intervals over a period of time usually 24 hours
	b)	taken month intervals over period of 2 days

	c)	taken long time
	d)	none of the above
5)		is any individual sample collected without compositing or adding
	oth	er samples.
	a)	Composite sample
	,	Grab sample
	c)	Integrated sample
	d)	Soil sample
6)		mposite samples are collected over time, either by sampling or mixing discrete samples.
	a)	different interval
	b)	monthly
	c)	yearly
	d)	continuous
7)		mpleat a particular time and place can represent only the mposition of the source at that time and place.
	a)	Collected
	b)	Generated
	c)	Gathering
	d)	Data
8)		mposite sample representing aperiod is considered standard for st determinations.
	a)	48 hr
	b)	10 hr
	c)	2 hr
9)	Sar	nple bottles/containers must be clearlyand identified.
ŕ	a)	labelled
	b)	quantifies
	c)	size
	d)	None of above
10	,	is defined as an individual aliquot (volume of water) taken er a period of time not to exceed 15 minutes.
	a)	Composite sample
	a) b)	Grab sample
	c)	Integrated sample
	\circ	megrace sample

d)	Quality control	
11)	is process oriented and is product oriented.	
a)	QA	
b)	QC	
c)	Data	
d)	a and b both	
•	npling points should be selected such that the samples taken are resentative of the	
a)	different sources from which water is obtained by the public or enters the system	
b)	different city of area which affected	
c)	river	
d)	stream	
13)San	npling points should be uniformly distributed throughout adistribution system.	
a)	Area	
b)	Size	
c)	Land	
d)	Pipe	
14)Tin	ne between sampling and analysis should be kept to a	
a)	minimum	
b)	maximum	
c)	neutral	
d)	All of the above	
15)	bottles must be clean but need not be sterile.	
a)	Glass	
b)	Sample	
c)	Soil	
d)	Plastic	
16)Large variations occur in a short duration of time, sampling needs to be done		
a)	Frequently	
b)	Yearly	
c)	6 months	
d)	Never	
17)	should be used only for water samples and never for the storage chemicals or other liquids.	

a)	Gases container
b)	Sample container
c)	Solvent
d)	Standard reagent
	pth sampler, which is sometimes called a grab sampler, is designed in such way
	t
	it can retrieve a sample from any predetermined depth it can consume water
	it is depending on soil
d)	all of the above
•	mpling depth is measured from the water surface to the of the mpler.
a)	higher
b)	lower
c)	middle
d)	none of above
	of the sample should be measured and recorded immediately after
the	sample is taken.
a)	Temperature
b)	Colour
c)	Odour
d)	Solid
21)	bottles should be resealed and stored in a clean, cool, dark
	vironment and protected from recontamination.
a)	Plastic
b)	Air
c)	Soil
d)	Sample
,	mple collection and bacteriological analysis will be less than
,	2 hours
,	4 hours
,	6 hours
,	5 hours
23)san	nples should simply be kept in a, dark place.
a)	dry
b)	cool
c)	other
d)	none of the above

,	e sampleform should be filled for each sampling occasion at
	onitoring station.
•	Identification Data
•	Data Value
•	Area
•	mples will be collected from well mixed section of the riverbelow the ter surface.
a)	10 cm
b)	20 cm
c)	40 cm
d)	30 cm
26)Sai	mples are refrigerated at prior to analysis unless method SOPs
	licate other storage conditions.
a)	$4^{0}\mathrm{C}$
b)	$2^{0}\mathrm{C}$
c)	$8^{0}\mathrm{C}$
•	10^{0} C
,	methods of preservation may be inadequate when applied to
•	tter.
a)	Dissolve
b)	Suspended
c)	Mixed
d)	None of the above
28)Alı	aminium, cadmium, chromium, copper, iron, lead, manganese, silver, and zinc,
	ich are
a)	Collected in use bottle and do not preserve it
b)	Storage in oven and add acid
c)	best collected in a separate clean bottle and acidified with nitric acid to a pH below 2.0
d)	all of the above
•	mples are kept in the until time of analysis. Cool condition
•	Oven
•	Medium
d)	All of the above
ref	mples that require analysis at room temperature (25°C) are brought out of rigeration and
a)	Put in oven

	•	Add distilled water
	c)	Storage it outside
31)		allowed to warm to the desired temperature before beginning analysis uid samples should be shipped in plastic containers, if possible and
01)	ъіч а)	the caps on the containers should be secured with tape
	a) b)	caps of container should not seal
	c)	it is disposal in sink
	d)	it is disposal in river
32)	,	en replicate samples are prepared in the field, it is necessary to
JZ)		
	a)	•
		Add distilled water and dilute it
	c)	homogenize the sample prior to separation into replicates
221	d)	all of the above
33)		er samples may need filtering and
	,	Basic
	,	Neutral
	,	Acidification
O 4\	,	All of the above
34)		oratory layout with both the reception and the sample collection room located
	•	at the entrance saves time and energy
	•	rooms where manipulation or analysis of samples takes place
	C)	consume time
	D)	large area required
35)		npling points should be located in such a way that water can be sampled mand reservoirs, etc.
	a)	Pipeline
	b)	Reserve tanks
	c)	Ground
	d)	Surface
36)	,	is not available the transportation time must not exceed 2
,	hou	1
	a)	Water
	b)	Area

c)	Plastic box
d)	Ice
•	stewater samples will typically be collected either by directly filling the apple container or
a)	by using an automatic sampler or other device
b)	by using chemical
c)	pressure pump
d)	all of the above
38)San	nple should be collected near the centre of the flow channel at approximatelypercent of the water depth.
a)	20 - 40%
b)	40 – 60 %
c)	60 - 80%
d)	80 -100%
	should be representative of the wastewater conditions at the
	e of sample collection.
•	Composite sample
,	Grab sample
c)	Integrated sample
d)	All of the above
•	nple depends on the type and number of analyses to be
	formed.
a)	
b)	•
c)	
,	Area
41)	are collected over time either by continuous sampling or by sing discrete samples.
	Grab samples
b)	-
c)	
d)	Composite samples
,	nposite sampling applications themay be used to collect
	e composite or flow proportional samples.
a)	automatic samplers
b)	radioactive samplers

c)	pressure gauge samplers
d)	all of the above
43)	must be added to the metals blank container for proper preservatio
a)	Sodium
b)	Formaldehyde
c)	Nitric acid
d)	Calcium carbonate
	mples for bacteriological analyses must always be collected directly into the paredor plastic sample container.
a)	glass
b)	PVC
c)	dark bottle
d)	All of the above
45)The	e sample container should be kept until it is to be filled.
a)	opened
b)	unopened
c)	direct
d)	indirect
	grab sample is asample which is collected at a specific ation at a certain point in time.
a)	create
b)	uncreate
c)	decomposed
d)	discrete
	nposite sample is made by thoroughlyseveral grab nples.
a)	mixing
b)	unmixing
c)	create
d)	uncreate
•	nposite sample may be made up of samples taken at different or at ferent points in
a)	location
b)	time
c)	size
d)	a and b both

	49)	may be used to reduce the analytical cost by reducing the
		number of samples.	
		a) Composite sample	
		b) Grab sample	
		c) Integrated sample	
		d) Rapid sample	
	50)is prejusually by a mixing and	pared by taking a representative portion of the original sample dividing process.
		a) Rapid sample	2 3 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		b) Reduced sample	
		c) Composite sample	
		d) Grab sample	
			Unit 3:
1)	Qu	nality control (QC) is a p	rocedure or set of procedures intended to ensure that
	a)	-	or performed service adheres to a defined set of quality criteria nts of the client or customer
	b)	recycling or disposing of	of the waste adds to the cost of production,
	c)	uncover defects from the	ne decision to allow or deny product release
	d)	none of above	
2)	_		agent for which we can dispense an accurately known amount
		f analyte.	
	,	Secondary	
	,	Primary	
	,	Stock Name of chave	
3/	,	None of above	s 12 a mal-1. How many males are there in 2a of cerbon?
3)		0.25 mol	s 12 g mol ⁻¹ . How many moles are there in 3g of carbon?
	,	0.22 mol	
	,	0.30 mol	
	,	0.18 mol	
4)	,		ation is expressed as the number of moles in which of the
٠,		lowing volumes?	
	a)	1 dL	
	b)	1ml	

	c)	1 litre
	d)	All of above
5)	25	mL is equivalent to how many litres (L)?
	a)	0.025
	b)	0.25
	c)	0.0025
	d)	All of above
6)	Ho L-1	ow many moles of HCl are there in 10 mL of a solution with a concentration of 0.5 mol ?
	a)	0.01 mol
	b)	0.02 mol
	c)	0.04 mol
	d)	0.05 mol
7)	Sto	ock or standard solution is a concentrated solution with an accurately known
	a)	Concentration
	b)	Dilution
	c)	Serial
	d)	Molar
		king solution is obtained by the accurate dilution of a or secondary standard
		ntion.
	-	Multiple
	,	Primary
	,	Advance
	,	Dilute
9)		orking solutions are made up inquantities for use in the short term. Long
	b)	Medium
	c)	Small
	d)	None of above
10	, —	is a reagent that is extremely pure, stable, it not a hydrate/has no water of ydration, and has a high molecular weight.
	a)	Primary standard
	b)	Secondary standard
	c)	Serial dilution
	d)	Working reagent

11)	is a standard that is prepared in the laboratory for a specific analysis.
a)	Primary standard
b)	Secondary standard
c)	Serial dilution
d)	Working reagent
11) S	tandard can be oftypes.
a)	1
b)	3
c)	4
d)	2
12) A	primary standard should bepure.
a)	>99.8 %
b)	99 %
c)	98 %
d)	All of above
13) so	olution of known concentration is called thesolution.
a)	Serial
b)	Dilution
c)	Standard
d)	None of above
14) Pi	rimary standard is highlyand cheaply available.
a)	Pure
b)	Impure
c)	Dilute
d)	Standard
15) O	xalic acid, Mohr's salt, potassium dichromate are some examples of standards.
a)	Secondary
b)	Primary
c)	Advance
d)	All of above
•	bstances whose standard solutions cannot be prepared directly are calledndards.
a)	Secondary

b)	Primary
c)	Dilute
d)	Stock
	is defined as the number of gram equivalent of solute dissolved in one litre of
th	e solution.
a)	Molarity
b)	•
•	Normality
,	Stock
	is defined as the number of gram moles of solute dissolved in one litre
	the solution.
	Molarity
	Normality
c)	Molality
d)	Dilution
19)On	ne of the commonly known titrations is thetitration.
	Alkaline
-	Acid
,	Base
d)	b and c both
20) _	is a chemical substance that undergoes a colour change at the endpoint.
a)	Indicators
b)	Stock
c)	Standard
d)	Reagent
21) St	trong acid is titrated against a
a)	weak base
b)	weak acid
c)	strong base
d)	dilute acid
22) St	trong acid reacts with a weak base to form asolution.
a)	Basic
b)	Acidic
c)	Neutral
d)	None of above

•	are solutions that contain a known and accurate amount of a substance or ement.
	Dilute solutions
,	
•	Secondary solution Stock solution
,	Standard solutions
u)	Standard Solutions
24) _	solution is a solution with a high purity and less reactivity.
a)	Primary standard
b)	Secondary standard
c)	Stock solution
d)	None of above
•	rimary standards are reagents that can involve in reactions.
•	Physical
,	Chemical
,	Biological
,	Neutral
•	of solutions is a concept of analytical chemistry that is required for the ccuracy of a titration.
a)	Derivation
b)	Stock
c)	Standardization
d)	Non standardization
27) Pi	rimary standards are less
a)	hygroscopic
b)	Hydroscopic
c)	Neutral
d)	Base
28) A	secondary standard has apurity than a primary standard.
a)	High
b)	Less
c)	Medium
d)	None of above

29) A	nhydrous sodium hydroxide is astandard.
a)	Primary
b)	Advance
c)	Stock
d)	Secondary
30) W	Thich of the following are primary standard?
a)	Oxalic acid
b)	Potassium permanganate
c)	Potassium dichromate
d)	Sodium hydroxide
	are commonly used to help identify and determine the concentration of a abstance whose concentration is unknown.
a)	Solutions
b)	Chemicals
c)	Paint
d)	Data
a) b) c)	es not exceed 0.08 - 0.09 % 0.01-0.02 % 0.1 - 0.8 % All of the above
	should have high relative molecular mass so that weighing errors are
	eglible.
,	Stock solution
	Concentration
c)	Molarity
d)	Primary standard
a)	tethyl orange is a weak base and is yellow in colour in theform. Unionised
b)	Ionised
c)	Reactive
d)	All of the above
35) V -	When titration between strong base and weak acid is to be performed then _is a good indicator.
a)	methyl orange
b)	phenolphthalein

c)	EBT	
d)	EDTA	
36) sta	ock solution is a highly	solution
	primary	
b)	- ·	
c)	•	
,	All of the above	
,	olutions are always	
a)	•	
b)	•	
c)	·	
,		
38) Pi	rimary standard solution and secondary st	tandard solution are used in
a)	quantitative	
b)	qualitative	
c)	steady	
d)	inflow	
sol a) b) c)	A solution of hydrogen peroxide is 15.2% lution? Assume that the solution has a der 4.95 M 3.72 M 6.02 M 5.00 M	
	Which of the following choices is characte	ristic of molality?
a)	Moles of solute per liter of solution	·
,	Equivalents per liter Useful in experiments with significant to	omparatura ahangas
c)	Useful in experiments with significant to	
•	When 10 moles of solute are dissolved in o	1
a)	8M	
b)	10M	
c)	12M	
d)	2M	
42) W	What do you mean by M/1000 solution?	
a)	1/1000 moles of solute are present in or	ne litre of solution

	b)	1/100 moles of solute are present in one litre of solution
	c)	1/10000 moles of solution prepare
	d)	All of the above
43)	V	What is the unit of Mole-fraction?
	a)	it is unit less
	b)	moles/L
	c)	moles/kg
	d)	none of the above
44)	W	That is unit of molality?
	a)	Moles/L
	b)	Moles/kg
	c)	l/kg
	d)	none of above
45)	wl	hich one of these is correct
	a)	Mass of solution = molality/times
	b)	Mass of solution = molarity/times
	c)	Mass of solvent = molarity /times
	٠,	name of softene mountey times
	d)	Volume of solution = molality/times
	d)	·
	d)	Volume of solution = molality/times
	d)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as
	d) — mo	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration.
	mo a)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration. Molarity
	mo a)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration. Molarity Molality
46)	d) mo a) b) c)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration. Molarity Molality Normality
46)	d) mo a) b) c)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration. Molarity Molality Normality None of above
46)	d) mo a) b) c) d)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration. Molarity Molality Normality None of above solution with a 3 molar/kg molality is often defined as
46)	d) mo a) b) c) d)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as clar concentration. Molarity Molality Normality None of above solution with a 3 molar/kg molality is often defined as
46)	d) mo a) b) c) d) A s a) b)	Volume of solution = molality/times is the number of moles of a substance per liter of solution, also known as lar concentration. Molarity Molality Normality None of above solution with a 3 molar/kg molality is often defined as 1M 2M

1	Normal
	Molar
	C) Molal
[None of above
49)]	Molality is the favoured concentration transmission approach because
8) the solution's mass of solute and solvent does not change.
) The solution molar change
	Concentration changeNone of above
() None of above
	UNIT 4
1)_	arise due to human mistakes.
6) Gross errors
k) Systematic errors
(Random errors
() None of above
2)	Zero error, and bias of an instrument are examples of systematic errors
á) Gross errors
k) Systematic errors
() Random errors
() None of above
3) :	Systematic errors can be corrected by
á) value
k) calibration
	reference
	l) area
	nstrument may have anerror.
	n) One
) Two
	,
) Zero

	d)	Four
5)		can also be due to improper design of the measuring scheme.
	a) G	Gross errors
	b)	Random errors
	c)	Value errors
	d)	Systematic errors
6)		measure the same input variable a number of times, keeping all other factors affecting measurement same
	a)	the same measured value would not be repeated
	b)	the value affects the instrument
	c)	collect information of instrument
	d)	none of above
		iting error is an important parameter used for specifying theof an rument.
	a)	Value
	b)	Data
	c)	Accuracy
	d)	Mitigation
8)	The	systematic errors of an instrument can be reduced by making
	a)	the sensitivity of instrument to environmental input as low as possible
	b)	the sensitivity of instrument to environmental input as high as possible
	c)	systematic errors does not depend on the sensitivity of instrument
	d)	None of these
9)	Sui	itable method for the reduction of systematic errors is/are
	a)	instrument must be designed carefully
	b)	by introducing an equal and opposite environmental input for compensating the effect of environmental input in a measurement system
	c)	by adding high gain feedback to measurement system
	d)	All of above
10) If	the instrument is used in wrong manner while application, then it will results in
	• • • •	······
	a)	Systematic error
	b)	Instrument error
	,	Random error
	d)	Environmental error
11) Tł	ne undesirable characteristics of an measuring system is/are

b)	Dead zone
c)	Non linearity
d)	All of these
•	Calibration of instrument is an important consideration in measurement system, errors lue to instruments being out of calibration can be rectified by
a)	Increasing the frequency of recalibration
b)	Increasing the temperature coefficient
c)	Increasing the susceptibility of measuring instrument
d)	Decreasing the frequency of recalibration
13) R	andom errors in a measurement system are due to
a)	Environmental changes
b)	Use of uncalibrated instrument
c)	Poor cabling practices
d)	Unpredictable effects
14) Th	e error between mean of finite data set and mean of infinite data set is known as
a)	True error of the mean
b)	Standard error of the mean
c)	Finite error
d)	Infinite error
15) I	n a measurement system,
a)	a single measurement component may have both random errors and systematic errors
b)	a measurement system consists of several components with each component having separate errors
c)	both the statement (a) & (b) are true
d)	neither statement (a) nor statement (b) are true
	is a measure of the variation between any estimated population value that is ased on a sample rather than true value for the population
a)	Standard Error
b)	Deviation
c)	Mean error
d)	Other error
17)Systematic errors can also be detected by measuring already knowna) qualities	
b)	quantities
c)	area

a) Drift

d)	size
18) _	is something you have done which is considered to be incorrect or
WI	rong.
a)	Value
b)	Size
c)	Error
d)	All of above
19) _	errors are natural errors.
a)	Random
b)	Human
c)	Gross
d)	Systematic
20)	is an action which is inaccurate or incorrect.
a)	Value
b)	Error
c)	Area
d)	None of above
21) S	ystematic error occurs due to
a)	Overuse of instrument
b)	Careless use of instrument
c)	Human sight
d)	a and b both
22) M	leasurement which is close to true value is
a)	Accurate
b)	Average
c)	Precise
d)	Error
23)Sy	estematic errors can remove by
a)	buying new instrument
b)	breaking the instrument
c)	dusting the instrument
d)	recalibrated the instrument
24)	is how close a value is to its true value.
a)	Accuracy

b)	Precision
c)	Data
,	Value
	is how close a series of measurements of the same thing are to each other.
•	Data
b)	Information
,	Accuracy
d)	Precision
-	curacy is the ability of the instrument to measure thevalue. Direct
b)	Accurate
c)	Indirect
d)	Other
27) A	ccuracy can be obtained by taking the readings.
a)	Big
b)	Medium
c)	Small
d)	None of above
28) Si	mall reading reduces theof the calculation.
a)	Value
b)	Error
c)	Size
d)	Area
29)Posca	int accuracy means the accuracy of theis only at the particular point on its ale.
a)	Instrument
b)	Report
c)	Data
d)	None of above
30)Sc	ale range determines the accuracy of the instrument.
a)	Accurate
b)	Uniform
c)	Non statistical
d)	All of above
,	uch type ofof the instruments is determined by identifying the measured alue regarding their true value.

a) Accuracy
b) Precision
c) Mitigation
d) None of above
32) The accuracy of the instruments is neglected up topercent from the true value
a) + o.4
b) $+0.5$
c) -0.5
d) b and c both
33)Precision meansor more values of the measurements are closed to each other.
a) One
b) Two
c) Zero
d) All of above
34) Value of precision differs because of theerror.
a) Observational
b) Accuracy
c) Data
d) Information
35) Accuracy refers to how close a measurement is to the true orvalue.
a) Neglected
b) False
c) Accepted
d) All of above
36) Precision is of accuracy.
a) dependent
b) independent
c) reverse
d) irreverse
37) of an experiment, object, or value is a measure of the reliability and consistency.
a) Precision
b) Accuracy
c) Data
d) Collection
,

38) W	hich can be avoided or whose magnitude can be determined is called as systemic
,	Tors.
a)	Precision
b)	Errors
c)	Accuracy
d)	Data
39) W	Then errors occur during operation is called aserror.
a)	Construction
b)	Information
c)	Operational
d)	Gross
40) E	rrors occur due to faulty instrument or reagent containing
	a) purities
	b) impurities
	c) reverse
	d) None of above
41) It	occurs accidentally or randomly so called aserror.
a)	indeterminate
b)	determinate
c)	time
d)	data
•	ir fluctuations occurring as students open and close lab doors cause changes ineadings.
a)	temperature
b)	pressure
c)	valve
d)	None of above
43) G	ross errors are caused by experimenter carelessness or
a)	equipment failure
b)	data failure
c)	outliers
d)	none of above
	data set of repetitive measurements is often expressed as a epresentative number called the mean or average.
a)	Single
b)	Multiple

c)	Double
d)	None of above
•	is the sum of individual measurements(xi) divided by the number of
	leasurements.
,	Median
,	Mean
,	Medium
	All of above
•	Precision is the opposite of uncertainty Widely scattered data results in a
	Methodological error is created by using the wrong indicator
•	instrumental error results when a spectrometer drifts
•	large average or standard deviation indicating poor precision
,	none of above
•	ccuracy of a result can be quantified by calculating the percent error
	percent
,	Data
c)	Statistical
,	Geometric
-	are samples of about the same size that are carried through an analysis in cactly the same way.
a)	One time
b)	Replicates
c)	Multiple
d)	Republish
49) T	heis the middle value in a set of data that has been arranged in numerical
OI	rder.
a)	Median
b)	Mean
c)	Statically
d)	Geometric
50) A	Accuracy measures agreement between a result and the value.
a)	Rejected
b)	Accepted
c)	Gathering
d)	All of above

1) Water quality monitoring is defined as theand analysis of water constituent and conditions.
a) Data
b) Sampling
c) Gathering
d) Working
2) that can nevertheless be affected by human sources, such as dissolved oxygen, bacteria, and nutrients.
a) Water
b) Air
c) Pollution
d) Human
3) Two hydrogen atoms and oneatom form a molecule of water.
a) Nitrogen
b) Carbon
c) Oxygen
d) Ammonia
4) water may get physically, chemically or biologically contaminated. a) Rain
b) Surface
c) Ground
d) All of above
5) pH is the term used to express the acidic or condition of a solution. a) Basic
b) Alkaline
c) Neutral
d) None of above
6) pH scale is represented as ranging from
a) 0 to 10
b) 0 to 8
c) 0 to 14
d) All of above
7) pH lesser than 7 isand more than 7 is asolution.
a) Acidic

- b) Basic
- c) Neutral
- d) a and b both
- 8) Who had invented the pH Scale?
 - a) S.P.L Sorenson
 - b) Benjamin Franklin
 - c) Henry Moseley
 - d) Wilhelm Rontgen
- 9) In which of the following field pH scale is important for measurements?
 - a) Medicine
 - b) Forestry
 - c) Food Science
 - d) All of the above
- 10) What is the pH value of very strong acid solution?
 - a) Less than 7
 - b) Less than 5
 - c) Less than 2
 - d) Less than zero
- 11) Why we measure the pH of sea water?
 - a) It helps in corrosion research
 - b) It helps in agricultural activity
 - c) It helps in fermentation
 - d) It helps in sterilization
- 12) Which statement is correct regarding Buffer Solution?
 - a) It is a solution whose pH change when small amount of an acid or base is added in it
 - b) It is a solution whose pH does not change when small amount of an acid or base is added in it
 - c) It does not use pH value as constant in wide variety of chemical applications
 - d) The solution of methanolic acid is an example of effective buffer solution
- 13) What is the pH value of pure water?
 - a) Less than 7
 - b) Greater than 7
 - c) Equal to 7
 - d) Greater than 14
- 14) How we will come to know that a given solution is acidic?
 - a) If its pH value is less than 7

- b) If its pH value is greater than 7
- c) If its pH value is less than 5
- d) If its pH value is 5
- 15) What will be the litmus test if the solution is basic?
 - a) Red litmus will turn to blue
 - b) Blue litmus will turn to red
 - c) No change in colour
 - d) It will change into orange pink
- 16) What is the pH value of pure alcohol?
 - a) 7
 - b) 7.33
 - c) 7.80
 - d) 8
- 17) What is the ph value of toothpaste?
 - a) It ranges from 3 to 10 depending upon the additives added in it
 - b) It ranges from 5 to 12 depending upon the additives added in it
 - c) It ranges from 7 to 14 depending upon the additives added in it
 - d) It ranges from 6 to 8 depending upon the additives added in it
 - 18) An acidic solution has:
 - a) Less concentration of hydrogen ions than hydroxide ions
 - b) More concentration of hydroxide ions than hydrogen ions
 - c) More concentration of hydroxyl ions
 - d) Equal concentration of hydroxide and hydrogen ions
- 19) Which of the following represents the physical characteristics of water?
 - a) Chloride content
 - b) BOD
 - c) Turbidity
 - d) COD
- 20) Which of the following is measured in mg/L?
 - a) Unit weight
 - b) Coefficient of cohesion
 - c) Discharge
 - d) Turbidity
- 21) Which of the following instrument is used to measure turbidity?
 - a) Olfactometer

b)	Turbidity meter	
c)	Colorimeter	
d)	Spectrophotometer	
22) W	hen the sewage becomes stronger, the turbidity of wastewater?	
a)	Increases	
b)	Decreases	
c)	Becomes constant	
d)	Slightly decrease	
23)Th	e size of suspended solids lies in the range of	
a)	$10^{-3} - 10^{-6} \mathrm{mm}$	
b)	$10^3 - 10^6 \mathrm{mm}$	
c)	$10^{-1} - 10^{-3} \text{ mm}$	
d)	$10^1 - 10^3 \text{mm}$	
	spended solids are measured by which of the following?	
•	Turbidity rod	
b)	Gravimetric test	
c)	Chromatography	
d)	Jackson's turbidity meter	
25)The	e maximum permissible limit for suspended solids is	
	10 mg/l	
	20 mg/l	
	30 mg/l	
-	40 mg/l	
26)Identify the correct relation between the following?		
a)	Dissolved solid = Total solid + Suspended solid	
b)	Dissolved solid = Total solid – Suspended solid	
c)	1	
d)	Dissolved solid = Suspended solid - Total solid	
27)WI	nich method is used to measure the colour of water?	
a)	Gravimetric analysis	
b)	Chromatography	
c)	Tintometer method	
d)	Hydrometer analysis	
•	CCU (True Colour Unit) is equivalent to	
a)	The colour produced by 1 g of platinum cobalt	
b)	The colour produced by 1 mg of platinum cobalt The colour produced by 1 mg of platinum cobalt in 11 of distilled water	
c)	The colour produced by 1 mg of platinum cobalt in 1L of distilled water. The colour produced by 1 mg of platinum cobalt in 1mL of distilled water.	
d)	The colour produced by 1 mg of platinum cobalt in 1mL of distilled water	
29) The range of temperature of water that is required to do the temperature test is		

a)	$10-25^{\circ}$ C
b)	$0-25^{0}$ C
c)	$10-30^{0}$ C
d)	$20-30^{0}$ C
30)W	hich of the following statement is wrong regarding turbidity?
a)	It is an extent to which light is absorbed by particles in the water
b)	• • • •
c)	It depends on the fineness of particle present in the water
d)	Turbidity rod is a laboratory method to measure turbidity
31)W	hat is the full form of NTU in context with turbidity?
,	Number of transfer unit
b)	Neurological turbidity unit
c)	Nephelometric turbidity unit
d)	Network terminal unit
32)W	Then depth of insertion of turbidity rod increases, the reading in the turbidity rod
a)	Decreases
b)	Increases
c)	First decrease, then increase
d)	Remains constant
33)	is determined by measuring the dissolved oxygen used by microorganisms
	uring the biochemical oxidation of organic matter in 5 days at 20°C.
a)	BOD5
b)	COD TOC
c) d)	ThOD
•	
,	ow are many forms of nitrogen present in wastewater?
a)	3
b)	4 2
c) d)	5
•	
	is determined by measuring the dissolved oxygen used during the chemical
	cidation of organic matter in 3 hours. COD
a) b)	BOD
c)	ThOD
d)	TOC
-	
	Thich of the following is used for a small concentration of organic matter? COD
a) b)	TOC
c)	BOD
d)	ThOD
•	
•	hich of the following indicates that the water body has been used for waste disposal? Chlorides
a)	Chlorides

- b) Nitrates c) Phosphates d) Ammonia
- 38) What is the maximum concentration of total solids present in wastewater?
 - a) 350 mg/L
 - b) 720 mg/L
 - c) 1200 mg/ L
 - d) 850 mg/L
- 39) The BOD test is carried out for how many days?
 - a) 1 day
 - b) 2 days
 - c) 5 days
 - d) 6 days
- 40) At what temperature the bottles for the BOD test are incubated?
 - a) 25 degree Celsius
 - b) 20 degree Celsius
 - c) 35 degree Celsius
 - d) 30 degree Celsius
- 41) What is the mathematical expression of BOD?
 - a) BOD = [(D1-D2)-(B1-B2)f]/P
 - b) BOD = [(D1-D2)-(B1-B2)f]
 - c) BOD = [(D1-D2) f]/P
 - d) BOD = [(D1-D2)-(B1-B2)]/P
- 42) In terms of percentage how much BOD is oxidised in 5 days?
 - a) 90%
 - b) 70-90%
 - c) 60-70%
 - d) 50%
- 43) How is COD calculated?
 - a) Waste water is oxidised chemically using sodium in acid solutions
 - b) Waste water is oxidised chemically using dichromate in acid solutions
 - c) Waste water is oxidised chemically using bromine in acid solutions
 - d) Waste water is oxidised chemically using strontium in acid solutions
 - 44) What is the ratio of BOD/COD in untreated waste?
 - a) 1-3
 - b) 0.3-0.8
 - c) 0.1-0.2
 - d) 3-5
- 45) What is the ratio of BOD/COD in the final effluent?
 - a) 08-1.2
 - b) 0.2-0.5
 - c) 0.1-0.3
 - d) 0.4-0.6
- 46) How is TSS calculated?

b)	MPN HPLC Filtration	
ď)	Mass spectrometer	
th	Which of these is the used as the indicator when the titration is carried out to determine amount of COD present in a sample?	e
	Methyl Orange	
	Methyl blue Phonolphtholoin	
	Phenolphthalein Ferroin	
•	ardness of water is due to the presence of salts of	
•	Potassium	
b)	Chlorine	
	Magnesium	
d)	Boron	
	elect the incorrect statement from the following option.	
	Water which does not form lather with soap and forms white scum is called hard water	
	Hard water contains dissolved calcium and magnesium salts in it	
	In hard water, cleansing quality of soap is depressed Due to the presence of dissolved hardness-producing salts, the boiling point of wat	-Δ1
u)	is depressed	C
50)H _	fardness of water is conventionally expressed in terms of equivalent amount of	
•	H_2CO_3	
	$MgCO_3$	
-	CaCO ₃ Na ₂ CO ₃	
u)	Unit 6	
1)) Air quality monitoring stations should be degree around TSDF.	
·	a) 100	
	b) 110	
	c) 120	
	d) 130	
2)	The locations of air quality monitoring stations depend on	
	a) Stack height	
	b) Wind speed	
	c) Wind direction	
	d) Rainfall	
3)	How many measurements should be taken for SPM in a year?	
•	·	

	a)	100
	b)	101
	c)	102
	d)	104
4)	Sta	ck gaseous emission for the parameters should be carried out basis.
	a)	Annual
	b)	Quarterly
	c)	Monthly
	d)	Hourly
5)	Wh	nich of the following stack emission has to be monitored continuously?
	a)	HCL
	b)	C
	c)	O
	d)	PM
6)		w many parameters are taken into consideration when measuring air quality, in
	Ind	
	a)	
	b)	
	c)	
٠,	d)	
7)		ch of the following pollutants are considered when measuring air quality?
		$CO, O_3, PM_{2.5}$
	•	NH ₃ , PM ₁₀ , Pb
	,	NO ₂ , SO ₂
٥,	,	All of the mentioned
8)		nich of the following devices is NOT used to control particulate emissions?
	a)	Electrostatic precipitator
	p)	Bag filters
	c)	Catalytic converters
٥,	d)	All of the mentioned
9)		ording to EPA of USA, the following is not one of the six major pollutants? Dzone
	b)	Carbon monoxide
	c)	Nitrogen oxides
	d)	Carbon di-oxide
10)The	e major contributor of Carbon monoxide is

a)	Motor vehicle
b)	Industrial processes
c)	Stationary fuel combustion
d)	None of the above
11)Th	e function of automobile catalytic converter is to control emissions of
a)	carbon dioxide and hydrogen
b)	carbon monoxide and hydrogen
c)	carbon monoxide and carbon dioxide
d)	carbon monoxide and nitrogen dioxide
12) D	ust particles are measured by theprinciple of orthogonal light
SC	attering.
a)	Physical
b)	Chemical
c)	Biological
d)	None of above
13) _	sensors are known to be reliable and accurate, maintenance free.
a)	ozone
b)	Carbon dioxide
c)	Sulphur dioxide
d)	Nitrogen dioxide
	nat is the size range of respirable suspended particulate matter?
a)	Less than 1 micrometre
b)	Less than 10 micrometre
c)	Less than 100 micrometre
,	Less than 0.1 micrometre
	nich of the following is a viable particulate?
,	Smoke
,	Mist
,	Dust
,	Moulds
,	nich type of particulate is condensed form of vapours?
Ĺ	Mist
,	Dust
,	Fumes
,	Smoke
* 1 / TTI	nat is the size range of atmospheric particulate matter?

b)	0.1-1 micron
c)	1-10 microns
d)	10 – 100 microns
18) In	rural areas, what has contributed significantly to particulate pollution?
a)	Incomplete combustion in vehicles
b)	Using wood for fire and cooking
c)	Fertilizers
,	All of the mentioned
	e particulate matter dispersed in the atmosphere is:
a)	Gaseous
b)	Mainly gaseous
c)	Non-gaseous
•	Mainly non-gaseous
•	numan beings, anoxia is caused due to:
•	SO_2
•	CO
,	CO_2
,	N_2O
•	here were no CO ₂ in the earth's atmosphere, the temperature of earth's surface uld have been
a)	same as present
b)	Less than the present
c)	Higher than the present
d)	Dependent on the amount of O_2 in the atmosphere
22) Pro	oportion of CO consumption consists of basic components
a)	The leaf boundary layer
b)	The stomata
c)	Radiation exchange
d)	All of Above
23)Wł	nich of the following leads to a disease called broncho spasm?
a)	SO_2
b)	SO_3
c)	SO_4
d)	CO_2
24)Wł	nich of the following gases has the highest affinity for blood haemoglobin?
a)	Carbon dioxide
b)	Oxygen

c)	Carbon monoxide
d)	Nitrogen
25) Wh	nich of the following is responsible for turning yellow Taj Mahal?
a)	Nitrogen dioxide
b)	Sulphur
c)	Chlorine
	Sulphur dioxide boiler flue gas is source of
a)	HCl
b)	NO
c)	HF
27) The	Volatile organic compounds e threshold concentration of sulphur dioxide in any industrial activity should not be mitted beyond
a)	2ppm
b)	3ppm
c)	4ppm
,	5ppm major contributor of Carbon monoxide is
a)	Motor vehicle
b)	Industrial processes
c)	Stationary fuel combustion
,	None of the above nich gas is mainly produced due to incomplete burning of wood?
a)	CO
b)	SO_2
c)	NO_2
,	NO ₃ ich is the major source for sulphur dioxide?
a)	Volcanic eruptions
b)	Coal and crude oil combustion
c)	Burning of petrol
d)	Sewage treatment process
31) The	e permissible concentration of PM 10 in the air is
a)	$60\mu g/m^3$
•	$40\mu g/m^3$
c)	$50\mu g/m^3$

,	20μg/m ³ nich of the following is/are inorganic gas (es)?
	Carbon monoxide
b)	Hydrogen sulphide
•	Chlorine
d)	All of the above
	or formed in the atmosphere, which of the following will least likely result in
	ironmental damage to an ecosystem?
,	Mercury
,	Carbon monoxide
c)	Lead
d)	Ozone
34) Aiı	pollution increases the risk ofand heart disease in the population.
a)	Respiratory
b)	Tumour
c)	Skin disease
d)	None of above
•	and local agencies should design their monitoring stations with the station perator.
a)	Public
b)	Supervisor
c)	State
d)	All of above
36) A	ir sampling is a necessary process often used in indoor environments and
a)	industrial workplaces where chemical agents are produced or used
b)	IOH Solutions will ensure that your company's employees are safe by offering
c)	released or formed in the atmosphere
d)	all of above
	esampling is a method of monitoring workers' exposure to these tential airborne workplace hazards.
a)	Hazardous
b)	Vital
c)	Toxic
d)	None of above
38)	pollutants are atmospheric substances.
a)	Water
b)	Soil

c)	Air
d)	Chemical
39) A	ir quality monitoring is challenging to enact as
a)	it requires the effective integration of multiple environmental data sources.
b)	potentially have a negative impact on the environment and organism health
c)	often used in indoor environments
d)	none of above
40) Wł	nat is the residence time of carbon monoxide?
a)	11-15 years
b)	1-3 years
c)	5 years
d)	Few minutes
41) NC	Ox emitted by automobiles is in the form of
a)	NO
b)	N_2O
c)	N_2O_3
d)	All of above
	is the greenhouse gas most scientists consider the main air pollutant of the arth's atmosphere.
a)	Sulphur
b)	Sulphur dioxide
c)	Nitrogen oxide
d)	Carbon dioxide
	are various exhaust gases from vehicles which are air pollutants causing mage to the atmosphere.
a)	Carbon monoxide
b)	Carbon dioxide
c)	Sulphur
d)	Hydrogen
44) _	is caused by solid and liquid particles and certain gases that are
	spended in the air.
•	Solid pollution
b)	Water pollution
c)	Air pollution
,	None of above
45) Ca	rbon monoxide is, odourless and can kill within minutes.

	a)	Colourless
	b)	Turbidity
	c)	Solid
	d)	All of above
46) H	igh quality air pollution data is needed by air regulators and
	a)	Collect air pollution emissions data from designated sources to expand the emissions
	b)	managers to implement the National Ambient Air Quality Standards
	c)	improve monitoring capabilities
	d)	none of above
47)	will indicate the status of the quality of air we breathe.
	a)	Data
	b)	Information
	c)	Work
	d)	Service
48) A	ir pollution can cause health problems and it can also damage the environment and
	_	
	,	Service
	b)	Size
	•	Property
	d)	All of above
49		nissions of carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC) controlled byon new gasoline driven cars.
a)	cata	alytic converters
b)	Ele	ectrostatic preceptor
c)	Cei	ntrifugal
,		avity chamber
50) En		ons ofare being reduced through lower sulphur content in gasoline.
	-	Nitrogen oxides
	,	sulphur oxides
	•	ozone
	d)	carbon

Subject: EM answer kye

Unit 1:

1	a
2	b
3	c c
4	С
2 3 4 5 6	a
6	d
7	a
8	b
9	c
10	a
11	d
12	а
13	b
14	a
15	b
16	a
17	a c
18	С
19	d
20	a
21	b
20 21 22 23 24 25	a
23	b
24	c
25	a

26	c		
27	A	Unit 2:	
28	С	UIIIt 2.	
29 30	b		
30	a		
31	b		
32	С		
33	a		
34	b		
35	c		
36	a		
37	b		
38	c		
39	a	Unit 4:	
40	b		
41	a	1	a
42	b	2	b
43	c	3 4 5 6	b
		4	c
	TT 1. 5	5	d
	Unit 5:		a
		7	c
		8	a
		9	d
		10	b
		11	d
		12	a
		13	d

14

	33	c
	34	a
	35	b
	36	d
	37	a
	38	b
	39	b
	40	c
	41	d
	42	a
	43	c
	44	a
	45	b
	46	d
	47	a
3:	48	d
σ:	49	a
	50	b

Unit 3

44

45

46

47

48

49

50

a

b

a

c

b

d

a

1	a
2 3 4 5 6	b
3	a
4	c
5	a
6	d
7	a
8	b
	c
10	a
11	b
12	d
13	a
14	c
15	a
16	b
17	a
18	c
19	a
20	d
21	a

22	c
23	b
24	d
25	a
26	b
27	c
28	a
29	b
30	d
31	c
32	a
33	b
34	d
35	a
36	b
37	c
38	b
39	a
40	a
41	d
42	b
43	a
44	a
45	b
46	c
47	a
48	c
49	b
50	a

1	b	15	c
2	a	16	a
3	b	17	b
4	a	18	c
5	b	19	a
6	d	20	b
7	a	21	d
8	a	22	a
9	a	23	d
10	b	24	a
11	d	25	d
12	a	26	b
13	d	27	c
14	a	28	b
15	b	29	a
16	a	30	b
17	b	31	a
18	a	32	d
19	c	33	b
20	a	34	a
21	d	35	c
22	a	36	b
23	b	37	a
24	a	38	b
25	d	39	c
26	a	40	b
27	b	41	a
28	c	42	b
29	a	43	a
30	d	44	a
31	a	45	b
32	c	46	c
		47	a
		48	b
		4.0	

b

a

c

a

b

c d

2

3

4

5

6

Unit 6:

35	c
36	a
37	b
38	c
39	a
40	b
41	a

a

b

49

50

8	a
9	d
10	d
11	a
12	b
13	c
14	a
15	a
16	b
17	a
18	b
19	С
20	d
21	b
20 21 22	a
23	c
24	b
25	c
26	b
27	c
28	c
29	a
30	d
31	c
32	a
33	a
34	b
35	a
36	b
37	a
37 38	c
39 40	c
40	b
41	a
42	c
42 43 44	b
44	b
45	c
46	c
47	d
48	c
49 50	d
50	c

43	a	
44	c	
45	a	
46	b	
47	a	
48	c	
49	a	
50	b	
1	С	
2	a	
3	d	
4	b	
5	a	
6	c	
7	d	
8	c	
9	d	
10	a	
11	a	
12	a	
11 12 13 14	b b	
14		
15	d	
16	c	
17	a	

18 b

19 c20 b21 b

22 d

23 b24 c25 d

26 b

27 d

28 a

29 a

30 b

31 a

32 d

33 b

34 a

42 d